skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Morath, Lea M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Physically crosslinked gelatin microgels were functionalized with a bioadhesive molecule, catechol, to study the effect of in situ generated H2O2 on full-thickness wound repair in diabetic mice. Due to the physically crosslinked nature of the microgels, they transition into a hydrogel film upon hydration. The formation of a hydrogel film was confirmed by the changes in their morphology and viscoelastic properties. Additionally, these microgels released up to 86 μM of H2O2 as a result of catechol autoxidation. The generated H2O2 completely eradicated Staphylococcus epidermidis with an initial concentration of 103 CFU mL−1. These microgels were not cytotoxic and promoted VEGF upregulation in immortalized human keratinocytes (HaCaT) in vitro. When the microgels were applied to a full-thickness dermal wound in diabetic mice, dermal wound closure was accelerated over 14 days, achieving a wound closure of 90% based on the wound area. Microgel-treated wounds also resulted in complete re-epithelialization and regeneration of new dermal tissues with morphology and structure resembling those of native tissues. These results indicate that the release of micromolar concentrations of H2O2 can accelerate wound healing in a healing-impaired animal. 
    more » « less
    Free, publicly-accessible full text available March 20, 2026